[试题] 102下 薛克民 应用数学方法 期中考

楼主: t0444564 (艾利欧)   2014-04-26 12:52:00
课程名称︰应用数学方法
课程性质︰数学系选修、数学研究所选修、应用数学科学研究所选修
课程教师︰薛克民
开课学院:数学系
开课系所︰理学院
考试日期︰2014年04月24日(五),15:30-17:30
考试时限:120分钟
是否需发放奖励金:是
试题 :
National Taiwan University Spring Semester, 2014
MATH 7421 Method of Applied Mathematics
                 Midterm
Date: 15:30-17:30, April 24th, 2014
 .Open Books
1. (40 points) Consider an algebraic equation of the form
             4
            x - εx - 1 = 0
  for x, where ε in R is a parameter.
  (a) (20 points) Suppose that ε<<1, find approximate expressions, correct
    to terms of O(ε), for each of the four solutions of the equation.
  (b) (20 points) Suppose that ε>>1, find the leading order (non-zero)
    approximations for all four of the solutions. In addition, find a more
    accurate approximation to the smallest root in this case.
2. (20 points) Verify that
            1
           ∫exp[-x*cosh(t)]dt ~ (2π/x)^(1/2) * exp(-x)
           -1
  as x →∞.
3. (40 points) Consider an integral of the form
                   ∞ ixt     2 -x
              I(x) = ∫ e   (1 + t ) dt
                  -∞
  for x in R.
  (a) (10 points) Find the function ψ(t) so that I(x) can be rewritten in
    the following form
                    ∞ xψ(t)
                I(x) = ∫ e   dt.
                    -∞
  (b) (10 points) Determine the steepest descent path.
  (c) (20 points) Find asymptotic approximation of I(x) as x → ∞.

Links booklink

Contact Us: admin [ a t ] ucptt.com