楼主:
NTUkobe (台大科比)
2014-11-22 13:28:20课程名称︰线性代数
课程性质︰必修
课程教师︰吕学一
开课学院:电机资讯学院
开课系所︰资讯工程学系
考试日期(年月日)︰103/10/9
考试时限(分钟):60分钟
试题 :
台大资工单班线性代数第一次小考
2014年10月9日下午四点起一个小时
总共四题,每题十分,可按任何顺序答题
第一题 Based upon our definitions of Abelian group and field shown in class,
prove that if (F, +,‧) is a field, then
1. a‧b ∈ F
2. a‧0_F = 0_F‧a = 0_F
hold for any elements a and b of F.
第二题 Let C denote the set of complex numbers. Let R denote the set of real
numbers. Let Q denote the set of rational numbers. Let + denote the component-
wise addition. Let‧denote the component-wise scalar mulplication.
1. Prove or disprove that (M_5x5(Q), R, +,‧) is a vector space.
2. Prove or disprove that (M_5x5(C), Q, +,‧) is a vector space.
第三题 Let V be a subset of vector space W = (W, F, +,‧) such that
ax + y ∈ V
holds for any scalar a∈F and any vectors x,y∈V . Prove that the
following two statements P1 and P2 imply each other:
P1: (a) There is a vector e 2 V such that x + e = x holds for each vector
x∈V and
(b) for each vector x∈V, there is a vector y∈V with x + y = e.
P2: 0_W∈V.
第四题 Let R and S be two subsets of vector space W = (W, F, +,‧). Use“罩
咖定理”to prove
span(R∩S) ⊆ span(R)∪span(S).