课程名称︰普通物理学甲上
课程性质︰数学系大一必带
课程教师︰黄晖理
开课学院:理学院
开课系所︰数学系
考试日期(年月日)︰2013/11/26
考试时限(分钟):120
是否需发放奖励金:是
(如未明确表示,则不予发放)
试题 :
1. Please derive the Bernoulli's equation. (30 pt.)
1 2 1 2
p + -ρv + ρgy = p + -ρv + ρgy
1 2 1 1 2 2 2 2
2. An idealized damped simple harmonic oscillator with damping constant b and
spring constant k. The block's mass is m. If the origin is at the
equilibrium point of the block. And the system initially start with the
amplitude x . (30 pt.)
M
(a) Show the block location x(t) as the function of time t.
(b) What is the angular frequency of the system?
3. Figure shows a pattern of resonant oscillation of a string of mass m and
length L and that is under tension τ.
(a) What is the wavelength λ of the transverse waves producing the
standing-wave pattern?
(b) What is the harmonic number n?
(c) What is the wave speed v?
(d) What is the frequency f of the transverse waves and of the oscillation
of the moving string elements?
▕︵︵︵︵▏
▕︶︶︶︶▏