real symmetric matrix的eigenvalue都会是real并且AB也会是symmetric,且AB=0 =>detAB = 0而detAB = detA * detB我有点误会,我先想想(1)假设BA有个eigenvector u,with eigenvalue sthen BAu = s u -> ABAu = s Au -> 0 = Au->BAu = 0 -> eigenvalue must be 0同样道理能解决(4)A^2 = P(Λ^2)P^-1 = O-> Λ = O -> A = O(2)若AB=0 则CS(B)可以由 RankB 个向量作为基底但这RankB个基底必须被A送到0 ->都是A的Nullspace基底的一部分 -> RankA + NullityA = n , NullityA>=RankB所以 RankA + RankB <= n(3)的话,也可以用必可对角化性质,说明A跟A^2rank一样也可以啦,其实那证明跟证eigenvalue一样是一样的(2)应该就是rank-nullity theorem最简单了吧嗯,因为我想到什么就打什么,没整理好我发现(1)可以直接由AB = O -> (AB)^T = O -> BA = O老实说这题有些选项跟对称矩阵没关系...