定义:假设f(n)为polynomially bounded则代表f(n)=O(n^k),
接着对左右两边取log变成:log(f(n))=O(logn) (意思就是log(f(n))<=k*logn)
结论:对f(n)取log只要小于k*logn, for all k属于常数,就是polynomially bounded
题目:(loglogn)!是polynomially bounded吗?
(技巧:使用log(n!)=n*logn的性质)
所以,log((loglogn)!)=loglogn*log(loglogn)<=loglogn*loglogn<=O(logn)
所以会是polynomially bounded!