Re: [解题] 高二数学 三阶行列式

楼主: arist ( 在他方 )   2014-03-12 23:40:17
: 记 行列式值=f(a,b,c) 为 a,b,c 的三次多项式
: 易知 f(a,b,0)恒等于零 => f 被c整除
: 同理, f 被 a,b 整除 => f(a,b,c) = K*abc
: 以 a=b=1, c=-1 代入求得 K=4
: (或者直接用眼睛看 abc 的系数) 故 f = 4abc
再帮忙补充一下,这个方法也可以来证明 凡德曼行列式:
而且直接可以得到四阶以上凡德曼的结果:
https://www.youtube.com/watch?v=Dj_GK4Lt1Fk
有兴趣 “玩”这个规则的可以再作以下四个练习:
http://youtu.be/pbHPGqGU-Cs?t=50s
但我也要补充,
对于一般高中生“不宜”探讨这些过度符号操作的行列式计算。
尤其是学生对于行列式的 意义 还没清楚前。
我十年前很喜欢操弄这些符号,现在回过来看真觉得当时在乱来,
我现在教学生时,都会向学生宣导这样的概念,
出这样高中考题的老师都没有在看课纲,数学的思绪也都是走偏的。
数学不是在玩这些规定操作的。
行列式比较合宜的切入观点是 面积、体积。
诸如用 面积来解释 克拉马 法则 就是比较好了解行列式的素材。
作者: happymen (遇见)   2014-03-13 07:56:00
数学有时会被窄作在符号操作有时更跨大他抽象化后的功能直觉、猜测,验証的科学精神常常只落在符号与抽象化中
作者: austin1119 (最后。)   2014-03-19 23:52:00
推,三阶行式在高中已被淡化,实不宜太偏的问题

Links booklink

Contact Us: admin [ a t ] ucptt.com