若是通识课程评价,请用 [通识] 分类,勿使用 [评价] 分类
标题范例:[通识] A58 普通心理学丙 林以正 (看完后请用ctrl+y删除这两行)
※ 本文是否可提供台大同学转作其他非营利用途?(须保留原作者 ID)
(是/否/其他条件): 是
哪一学年度修课: 104-2
ψ 授课教师 (若为多人合授请写开课教师,以方便收录)
刘琼如
λ 开课系所与授课对象 (是否为必修或通识课 / 内容是否与某些背景相关)
生机系、生工系、工管系
δ 课程大概内容
[11.1] Sequences
[11.2] Series
[11.3] The Integral Test and Estimates of Sums
[11.4] The Comparison Tests
[11.5] Alternating Series
[11.6] Absolute Convergence and the Ratio and Root Tests
[11.7] Strategy for Testing Series
[11.8] Power Series
[11.9] Representations of Functions as Power Series
[11.10] Taylor and Maclaurin Series
[11.11] Applications of Taylor Polynomials
[13.1] Vector Functions and Space Curves
[13.2] Derivatives and Integrals of Vector Functions
[13.3] Arc Length and Curvature
[14.1] Functions of Several Variables
[14.2] Limits and Continuity
[14.3] Partial Derivatives
[14.4] Tangent Planes and Linear Approximations
[14.5] The Chain Rule
[14.6] Directional Derivatives and the Gradient Vector
[14.7] Maximum and Minimum Values
[14.8] Lagrange Multipliers
midterm
[15.1] Double Integrals over Rectangles
[15.2] Iterated Integrals
[15.3] Double Integrals over General Regions
[15.4] Double Integrals in Polar Coordinates
[15.6] Surface Area
[15.7] Triple Integrals
[15.8] Triple Integrals in Cylindrical Coordinates
[15.9] Triple Integrals in Spherical Coordinates
[15.10] Change of Variables in Multiple Integrals
[16.1] Vector Fields
[16.2] Line Integrals
[16.3] The Fundamental Theorem for Line Integrals
[16.4] Green's Theorem
[16.5] Curl and Divergence
[16.6] Parametric Surfaces and Their Areas
[16.7] Surface Integrals
[16.8] Stokes' Theorem
[16.9] The Divergence Theorem
Ω 私心推荐指数(以五分计) ★★★★★
★★★★★
η 上课用书(影印讲义或是指定教科书)
stewart
μ 上课方式(投影片、团体讨论、老师教学风格)
板书上课
σ 评分方式(给分甜吗?是扎实分?)
期中考 30%
期末考 40%
小考(12次取9次) 30% (会调分调到全班平均70-80)
ρ 考题型式、作业方式
没有作业
小考基本上都从勾的题目出
期中期末基本上有满大一部分从甲一、甲二考古题出,
除了这次期中考的最后一题,有比较难,剩下难度都普
通。
ω 其它(是否注重出席率?如果为外系选修,需先有什么基础较好吗?老师个性?
加签习惯?严禁迟到等…)
加签全签
你不来都没关系(强者我朋友期中考95,没来上过课)
Ψ 总结
还不错的教授,问问题都会尽量回复,而且人真的超好
的,每次小考虽然有限时,但只要有同学举手说没写完
,就会延长。不过上课纯板书,所以集中力要很够,像
废物如我,通常撑完第一节,就倒了。