课程名称︰工程数学下
课程性质︰必修
课程教师︰萧浩明
开课学院:工学院
开课系所︰机械系
考试日期(年月日)︰2020/4/29
考试时限(分钟):60
是否需发放奖励金:是
试题 :
1.(a) Expand f(x) = ∣x∣, ∣x∣≦ π, in a Fourier series.
                                      ∞
  (b) Use the result from (a) to find Σ 1/(2k-1)^2
                                      n=1
2.Given the generating function for Legendre polynomials
                           ∞
       1/(1-2xt+t^2)^0.5 = Σ Pn(x) t^n
                           n=1
          ∞
  express Σ Pn(cosθ) as a function of csc(0.5θ), 0<θ<2π.
          n=0
                                               sin(x), ∣x∣≦π
3.Use the Fourier integral to express f(x) = {
                                               0     , ∣x∣>π
                            ∞
  in terms of the integral ∫  g(α,x) dα.
                            0
            ∞                                               1
4.If f(x) = Σ AnPn(x), derive its own Parseval's identity ∫ [f(x)]^2 dx
            n=0                                             -1
  in terms of An and n. Pn(x) are Legendre Polynomials.