[试题] 102下 刘丰哲 实分析二 期末考

楼主: t0444564 (艾利欧)   2015-07-04 16:37:11
课程名称︰实分析二
课程性质︰数学研究所必选修、应用数学科学研究所必选修、数学系选修
课程教师︰刘丰哲
开课学院:理学院
开课系所︰数学系
考试日期︰2014年06月
考试时限:110分钟
试题 :
             Real Anaylsis II Final Exam
        -x^2 n
1. Let fn(x) = e   x , x ∈R, n = 0,1,2,….
 (a) (10%) Show that <{fn}> is dense in L^2(R).
 (b) (10%) Show that the orthonormal system constructed from {fn} by
   Gram-Schmidt procedure is an orthonormal basis for L^2(R).
               k,p                  ∞
2. (a) (15%) Show that if f∈W (Ω), then there is a sequence fj∈C(Ω) such
           k,p
    that fj→f in W (Ω_ε) as j→∞ for each ε > 0 where Ω_ε={x∈Ω:
    dist(x,Ω^c) > ε}.  k,p     k,q
  (b) (10%) Show that if f∈W (Ω), g∈W (Ω), 1/p + 1/q = 1, p,q < ∞,
         k,1
    then fg∈W (Ω).
3. (20%) Suppose that f is an absolutely continuous function on [-π,π] such
  that f(-π) = f(π) and f'∈L^2 [-π,π]. Show that Sn(f,x)→f(x) uniformly
  for x∈[-π,π]
                   ∞  *
4. (15%) Show that there exists T∈(l (N)) such that liminf f(j) ≦ T(f) ≦
              ∞            j→∞   ∞
  limsup f(j) for each f∈l (N). (Hint: Frist define T on {f∈l (N):lim f(j)
  j→∞                              j→∞
  exists }.)
5. (20%) Let (Ω,Σ,μ) be a σ-finte measure space, 1/p + 1/q = 1, and
  1 < p < ∞. Suppose that f, fk∈L^p(Ω,Σ,μ) for k∈N. Show that
  lim ∫(fk)g dμ = ∫fg dμ for all g∈L^q(Ω,Σ,μ) if and only if
  k→∞ Ω      Ω
  sup ||fk|| < ∞ and lim ∫fk dμ = ∫f dμ for all E∈Σ with μ(E) < ∞.
  k    p     k→∞ E     E

Links booklink

Contact Us: admin [ a t ] ucptt.com