课程名称︰实分析二
课程性质︰数学研究所必选修、应用数学科学研究所必选修、数学系选修
课程教师︰刘丰哲
开课学院:理学院
开课系所︰数学系
考试日期︰2014年06月
考试时限:110分钟
试题 :
Real Anaylsis II Final Exam
-x^2 n
1. Let fn(x) = e x , x ∈R, n = 0,1,2,….
(a) (10%) Show that <{fn}> is dense in L^2(R).
(b) (10%) Show that the orthonormal system constructed from {fn} by
Gram-Schmidt procedure is an orthonormal basis for L^2(R).
k,p ∞
2. (a) (15%) Show that if f∈W (Ω), then there is a sequence fj∈C(Ω) such
k,p
that fj→f in W (Ω_ε) as j→∞ for each ε > 0 where Ω_ε={x∈Ω:
dist(x,Ω^c) > ε}. k,p k,q
(b) (10%) Show that if f∈W (Ω), g∈W (Ω), 1/p + 1/q = 1, p,q < ∞,
k,1
then fg∈W (Ω).
3. (20%) Suppose that f is an absolutely continuous function on [-π,π] such
that f(-π) = f(π) and f'∈L^2 [-π,π]. Show that Sn(f,x)→f(x) uniformly
for x∈[-π,π]
∞ *
4. (15%) Show that there exists T∈(l (N)) such that liminf f(j) ≦ T(f) ≦
∞ j→∞ ∞
limsup f(j) for each f∈l (N). (Hint: Frist define T on {f∈l (N):lim f(j)
j→∞ j→∞
exists }.)
5. (20%) Let (Ω,Σ,μ) be a σ-finte measure space, 1/p + 1/q = 1, and
1 < p < ∞. Suppose that f, fk∈L^p(Ω,Σ,μ) for k∈N. Show that
lim ∫(fk)g dμ = ∫fg dμ for all g∈L^q(Ω,Σ,μ) if and only if
k→∞ Ω Ω
sup ||fk|| < ∞ and lim ∫fk dμ = ∫f dμ for all E∈Σ with μ(E) < ∞.
k p k→∞ E E