课程名称︰微积分甲下
课程性质︰大一必修
课程教师︰容志辉
开课学院:工学院
开课系所︰电机系、材料系
考试日期(年月日)︰2015/06/15
考试时限(分钟):50 分钟
试题 :
===============================================================================
103-2 Calculus class-2  4th test
                                                      2     2
1. Consider the vector field: F(x,y) = (3 + 2xy)i + (x  - 3y )j
  (a) Show that F is conservative by finding a potential function for it.
  (b) Evaluate the line integral ∫ F.dr where C is the curve given by
                                  C
                  t            t
          r(t) = e sin(t) i + e cos(t) j      0 <= t <= π
                x
2. Evaluate ∮ e [ (1-cos(y))dx - (y-sin(y))dy ], C is the boundary of
             C
  0 <= x <= π, 0 <= y <= sin(x) oriented counterclockwise.
                         2            2
3. Consider F(x,y,z) = -y  i + x j + z  k
  (a) Find curl F
  (b) Evaluate ∫ F.dr, where C is the curve of intersection of the plane
                C
                            2   2
    y + z = 2 and cylinder x + y = 1.
4.
                       1                √3
  (a) consider r(t) = (─(1 + cos(t)) , ──(1 + cos(t)) , sin(t) ), where
                       2                 2
              π
    0 <= t <= ─, find the centroid of r(t).
              2
  (b) consider r(t,u) = ( (1+cos(t))sin(u) , (1+cos(t))cos(u) , sin(t) ), where
              π
    0 <= t <= ─, 0 <= u <= 2π, find the surface area of r.
              2
==================================  试题完  ===================================