干脆开一篇好了,抱歉应该是叫做怪兽月光猜想,以前我不知道月光但是我知道怪兽
http://en.wikipedia.org/wiki/Monstrous_moonshine
但是最让我惊讶的是CFT竟然把数学我觉得永远不会跟物理连在一起的全部串起来
当然我自己知道吾生有涯,学海无涯的道理,这一切真的是蛮神奇和有趣的
但是我不知道这些是不是真实的物理,因为杨振宁也说过类似太漂亮的数学也不一定是
有物理意义的(我记得当时他是在评论有人问为什么他不做弦论的物理)
我大学念数学只知道有限单群分类是20世纪数学最伟大的工作之一,有一个群
叫做怪兽群(monster group)
http://w3.math.sinica.edu.tw/math_media/d354/35403.pdf
当时我们某个代数老师嘴砲说数学家她觉得最聪明的群论学家叫做John Conway
http://en.wikipedia.org/wiki/John_Horton_Conway
因为他做了一件伟大的事情但可惜没拿费尔兹奖
http://en.wikipedia.org/wiki/Conway_group
History
Thomas Thompson (1983) relates how John Leech about 1964 investigated close
packings of spheres in Euclidean spaces of large dimension. One of Leech's
discoveries was a lattice packing in 24-space, based on what came to be
called the Leech lattice Λ. He wondered whether his lattice's symmetry group
contained an interesting simple group, but felt he needed the help of someone
better acquainted with group theory. He had to do much asking around because
the mathematicians were pre-occupied with agendas of their own. John Conway
agreed to look at the problem. John G. Thompson said he would be interested
if he were given the order of the group. Conway expected to spend months or
years on the problem, but found results in just a few sessions.
Witt (1998, page 329) stated that he found the Leech lattice in 1940 and
hinted that he calculated the order of its automorphism group (the double
cover of Conway's largest simple group).
这一切竟然可以从Kepler的最密堆积开始说起,也就是CFT的代数几乎无所不包
我当然知道纯代数内容无论是深度广度都是很恐怖的
Gauss定义一个东西叫lattice,最有名的是Leech lattice,这可应用用在编码学上面
http://en.wikipedia.org/wiki/Leech_lattice
这里面有一个Havard史上最年轻的26岁正教授Noam Elkies做一个很轰动的结果
http://en.wikipedia.org/wiki/Noam_Elkies
Noam Elkies是一个著名数学家,音乐学家和象棋学家
八卦是
有哈佛的乡民或是数学系知道这位Noam Elikes教授其他的八卦吗?XD