※ 引述《obelisk0114 (追风筝的孩子)》之铭言:
: ※ 引述《tiesto1114 (Tiesto)》之铭言:
: : 1. 1
: : ∫((1-x^7)^(1/3)-(1-x^3)^(1/7))dx
: : 0
: : 2. lim{∫([bx+a(1-x)]^n)dx)}^(1/n),b>a>0.
: : n→0
: : 3.一曲面x^2/4+y^2+z^2/9=3,求其在(-2,1,3)这点的tangent plane和normal line.
: : 4.一个碗里面有水,水蒸发的速率和水面面积(就是水和空气接触的面积)成正比,请证明水
: : 面下降的速率(水深减少的速率)为定值(和碗的形状无关).
: : 5. ∞
: : Σ (1/(1+n^2)) 是否收敛?
: : n=1
: : 6.一曲线为x^2+y^2=1及x-y+z=1的交线,而f(x,y,z)=x+2y+3z,求在曲线上f的最大值.
可以设 x =cos@, y = sin@
f = x+ 2y + 3(1-x+y)
这样解一下就出来了
: : 7.R为y^2=4-4x和y^2=4+4x所围成的区域,其中y≧0,求∫∫ydA
: : R
: 无聊一下,一些题目用数学软件跑的结果
: 不保证正确,指令有可能会写错,仅供参考
: 1.此题的解法在数学版有提供,在此提供他的图形描述
: y = (1-x^7)^(1/3)和 y = (1-x^3)^(1/7)在[0,1]完全重合
: 此外,两者的图形整体来看极为相似
: 这题答案为0
: 2.CPU太弱,跑太久,中途被我干掉
: 3.不需要数学软件,找出gradient作为法向量
: 4.不需要数学软件
: 5.1/2*(π*coth(π)-1)~1.07667
: coth(x) is the hyperbolic cotangent function
: 收敛
: 6.指令不会写
: 7.作图可知图形面积由两条开口不同方向的抛物线构成,此题答案为2