※ 引述《Saladking (AllhailSaladking)》之铭言:
: 版上有许多询问97年的题目,就是没问到这题
: 是太简单了吗QQ
: A number a is called a fixed pointed of a function f if f(a)=a.
point
: Prove that if f'(x)≠1 for all real numbers x,
: then f has at most one fixed point.
: 不常作这种证明题,恳请各位大哥大姊提点一下
g(x) = f(x) - x
发生g(a) = 0的点x = a称为f(x)的fixed point
g'(x) = f'(x) - 1 =/= 0 for all real x
又因为g'(x)为连续函数,
g(x)只能为严格递增函数或是严格递减函数
这表示g(x)和x轴“最多”只有一个交点
=> f(x)最多只有一个fixed point