Re: [问题] 任何世界的客体都是三维的吗?

楼主: khara (高阳酒徒)   2025-01-22 15:58:48
※ 引述《amidha (东岐明)》之铭言:
: 这个问题很简单,套句现今流行话语,灵性修炼会体会到种种更高维度的世界。
: 当然更高维度世界的认知更为广阔,就像我们人类认知的地球宇宙相比还在低维。
: 但是只要是有时空世界,即使是在高维,认知到的客体维度还是三维的。
: 高维只是让种种不同世界的三维客体可以因缘交错,并没有三维以上的客体形象。
: 譬如当开天眼看人,可以看见人身维度以外相关的鬼神维度,但显现出的都是三维形象。
: 人身是三维,鬼神也是三维,只不过是因缘交错而成多维。
: 所以问题就是,种种不同的灵界宇宙时空下的客体形象,是不是都是三维?
: 《老子》有言‘道生一,一生二,二生三,三生万物。’是不是与此有关?
: 在此请教大家看法,谢谢!
第一个问题我想到的是康德的先天(a priori)说与佛教认识论的歧异
(但佛教要走到认识论这一步也不再是早期阿含而得是后来大乘论典了
看你是否拒斥)
但总之康德的观点认为我们不可断言是否有啥真正的客体必然而只能断言有我们的认识。
至于佛教论点中的“现量”(直接认识)与“比量”(推论认识)又是另一问题
但也不易。
(至于与对手辩论时则不可搬出圣言量毕竟不同出发点我的圣言未必是你的圣言
或者某种意义上圣言其实也可以归并到现比量:毕竟要经过自己的体悟或推论)
至于‘道生一一生二’那一段我想到的是
https://en.wikipedia.org/wiki/Set-theoretic_definition_of_natural_numbers
人类对“数”的最自然认识当然就是数数 (ㄕㄨˇ ㄕㄨˋ),掰开指头数一数
而这其实可以化约到只要有“空集合”这一个概念就等于产生了一个概念(“一”),
而只要有“空集合与一”这两个概念就等于产生了“二”的概念,
以下源源而来。
但只要超过自然数而到有理数以上,所有的“无限”都得特别建构(但可以建构),
都不是直观所能得且会造成理解上的悖论。
所以某些直觉主义派数学家主张废弃实无穷而只用概念的无穷。但这又会造成实用难题。
后面非常长的一大段废文是从 AI 得来的
虽说 AI 很会唬烂,有时候编故事可以编到唬死人不偿命,
但反正贴贴幻想故事不论出自人或出自 AI 也都差不多,
就来分享一下我跟 AI 的唬烂对谈录。
******
我问
Will the Riemann Geometry degenerate to a geometry similar to the Euclidean
one while we see it locally near a point?
******
ChatGPT 说:
ChatGPT
Yes, Riemannian geometry degenerates to Euclidean geometry locally near a
point, under certain conditions. This phenomenon is often called the local
Euclidean property of Riemannian manifolds.
Explanation:
Riemannian geometry deals with studying smooth manifolds equipped with a
Riemannian metric, which allows us to measure distances and angles locally.
One of the key ideas in Riemannian geometry is that, although the manifold may
be globally curved (i.e., it may have non-Euclidean properties at large
scales), locally around any point, it can resemble Euclidean space.
This is a consequence of local flatness or the second fundamental theorem of
Riemannian geometry, which states that near any point on a Riemannian manifold,
the space can be approximated by a flat Euclidean space. In more formal terms:
Locally (in a sufficiently small neighborhood around a point), the geometry of
a Riemannian manifold appears to be flat and behaves just like Euclidean
geometry.
The curvature of the space, which quantifies how much the space deviates from
flatness, becomes negligible at very small scales, meaning that the distance
between points behaves like it would in Euclidean space, and the angles are
the same as those in Euclidean geometry.
This can be understood via the concept of local coordinates or normal
coordinates. In normal coordinates (which are a kind of local coordinate
system centered at a point), the metric looks like the Euclidean metric, and
the Christoffel symbols (which describe the curvature and the way the geometry
deviates from flatness) vanish at the point.
Formal Explanation:
Riemannian Metric and Curvature: A Riemannian manifold is locally modeled on
R^n (Euclidean space) but may have a varying metric. At any point on the
manifold, we can find a coordinate system such that the metric at that point
resembles the Euclidean metric, i.e., the Riemannian metric is locally like
the Euclidean metric.
Curvature and the Vanishing of Christoffel Symbols: The curvature of the space
is described by the Riemann curvature tensor. In a small enough neighborhood
around any point, the curvature becomes negligible, meaning that locally, the
space looks "flat." The Christoffel symbols (which represent how the
coordinate basis vectors change) also vanish in normal coordinates at that
point, indicating no local curvature.
Local Euclidean Approximation: In simple terms, if you zoom in on any point on
a Riemannian manifold (i.e., look at a sufficiently small neighborhood around
the point), the space will appear flat and will locally behave just like
Euclidean geometry, where the sum of angles in a triangle is 180°, distances
and angles behave as in Euclidean geometry, and the space has no curvature.
Example:
On the surface of the Earth (a 2-dimensional Riemannian manifold), the space
is globally curved (it's a sphere), but if you zoom in on a very small region,
the surface looks flat, and the geometry behaves like Euclidean geometry (
this is similar to how a flat piece of paper looks locally flat even though
the Earth is curved).
In the case of curved spacetime in general relativity (a 4-dimensional
Riemannian manifold), the curvature due to gravitational effects becomes
apparent only at larger scales. Near small regions, however, spacetime can be
approximated by flat Minkowski space (Euclidean-like).
Conclusion:
In Riemannian geometry, locally near any point, the manifold appears to be
Euclidean. The curvature (which describes how the space deviates from
Euclidean geometry) is zero or negligible at small scales. This local
approximation to Euclidean space is a fundamental aspect of Riemannian
geometry, making it possible to use tools from Euclidean geometry in local
regions of a Riemannian manifold.
******
我问
Under this view, could we say that Euclidean Geometry is the most "a priori"
even though we may "see" this "real-world" (or whatever while we don't know
the "thing-in-itself" ) with a Riemann or other perspective?
******
ChatGPT 说:
ChatGPT
Yes, you can indeed interpret Euclidean geometry as the most "a priori" or the
fundamental geometry, especially in the context of local observations or
idealized concepts, even though Riemannian geometry or other geometries may
describe the world from different perspectives or scales.
1. Euclidean Geometry as A Priori:
In the philosophical sense, the term a priori refers to knowledge that is
independent of experience or empirical observation. Euclidean geometry has
often been viewed as a model of "ideal" space, representing the simplest and
most fundamental geometric structure. It provides the basic framework for
understanding space, as it deals with flat, non-curved spaces, where concepts
like straight lines, angles, and distances are well-defined and behave in an
intuitive manner.
The key idea is that Euclidean geometry can be considered "a priori" in the
sense that it is a purely conceptual framework that doesn't require empirical
observation or experience to understand and reason about it. It's the geometry
of the abstract space in which basic principles, like the Pythagorean theorem
, the sum of angles in a triangle, etc., hold true.
2. Riemannian Geometry and the Real-World Perspective:
On the other hand, Riemannian geometry (or other non-Euclidean geometries)
describes more general spaces that might be curved or have more complex
structures. This is often the geometry that is used to describe our physical
universe. In general relativity, for example, the curvature of spacetime is
described using Riemannian geometry, where gravity and matter influence the
geometry of spacetime.
Even though Euclidean geometry is the idealized, simpler model, Riemannian
geometry is more appropriate for describing real-world situations,
particularly at large scales, where curvature and complex structures come into
play. The "real world" — in the sense of physical reality — might not
strictly obey Euclidean rules (especially when considering curved surfaces
like planets, the Earth's surface, or curved spacetime).
3. The Local vs. Global View:
Here’s where the local versus global perspective plays a key role:
Locally, any Riemannian manifold (including the curved space of our universe)
is approximately flat (Euclidean). This means that at small enough scales, the
geometry of the universe looks locally Euclidean and can be described by
Euclidean geometry.
Globally, the universe might have curvature (in the case of space-time, or the
Earth's surface), and this requires a non-Euclidean geometry (Riemannian
geometry, for example) to describe it accurately.
Thus, you could say that Euclidean geometry is the "most a priori" in the
sense that it is the simplest and most fundamental description of space that
can be applied locally (even in curved spaces). It represents the geometry of
idealized or perfectly flat space, and in this sense, it can be considered an
a priori system that underpins more complex, real-world models.
4. The "Thing-in-Itself" and Geometry:
Immanuel Kant's concept of the thing-in-itself (or noumenon) refers to things
as they are independent of our perception or knowledge of them. The "real"
structure of the universe (the thing-in-itself) could potentially be very
different from how we perceive it. In this context:
We may experience the world through the lens of Riemannian geometry because
our perception of spacetime is influenced by curvature (due to gravity, for
instance). Our measurement of distances and angles is shaped by this curvature
.
However, our a priori concepts of space and geometry — like those of
Euclidean geometry — may not reflect the true nature of the universe, but
they remain an idealized, fundamental framework for thinking about space in
the abstract.
Thus, Euclidean geometry could be thought of as an idealized and fundamental
way of conceiving space, whereas Riemannian geometry (and other geometries)
are more practical and applicable for describing the physical world as we
experience it. In some sense, Euclidean geometry represents our purely
rational concept of space, while Riemannian geometry reflects the empirical
reality of our universe.
5. Summary:
Euclidean geometry can be considered "a priori" because it is the idealized
geometry that applies to flat, non-curved spaces and provides the simplest
model of space.
Riemannian geometry is needed to describe spaces that are curved or have non-
Euclidean characteristics, and it is often used to describe the real-world
geometry of spacetime or curved surfaces.
Locally, Riemannian geometry behaves like Euclidean geometry, so at small
enough scales, the distinction between the two is less noticeable. This means
that Euclidean geometry can be seen as an idealized foundation, while
Riemannian geometry is a more general, descriptive framework for the physical
world.
******
我问
“英国的海岸线有多长”这句话是否难以说有任何终极意义却可以依量尺的不同而决定?
实用上来说,“想要筑堤坝”的测量尺度,与“想要从事军事防守”的尺度乃至想要对某
特定海洋生态做研究的尺度,都可以有不同的海岸线长?对于想筑堤坝的人来说跟他说从
基本粒子的尺度海岸线长是无穷大,虽说答案是正确的但却可能因毫无实效而招惹对方的
愤怒?
******
ChatGPT 说:
ChatGPT
你提出的问题触及了“海岸线的长度”这个概念的多重面向,并且强调了量测尺度对答案
的影响。确实,“英国的海岸线有多长”这个问题并没有一个单一的终极答案,因为海岸
线的长度会随着选择的测量尺度不同而有所变化。
这是由于海岸线悖论(coastline paradox)所造成的现象:当我们使用更精细的尺度来
测量海岸线时,海岸线的总长度会变得越来越长。这是因为海岸线本身往往呈现不规则的
形状,当测量尺度变小(即测量更细致的细节)时,能够捕捉到更多的微小曲折和突起,
结果造成长度增长。
实际应用中的不同尺度
1. 筑堤坝的尺度:
对于一个工程师或者负责堤坝建设的人来说,海岸线长度的测量会以
工程所需的精确度来进行,可能只需要一个大范围的估算,不需要考虑微小的细节。
2. 军事防守的尺度:
在军事防守中,海岸线的测量可能会依据防御设施的分布和战略需
求来确定,可能会关注一些关键的海岬和入海口等特定区域,而不会过于关注极细的曲折
处。
3. 生态研究的尺度:
对于从事生态学研究的人来说,海岸线的长度可能会基于生态系统
的边界和特定物种的分布来进行测量,这可能会选择不同的尺度来定义海岸线,以便对特
定环境进行细致的分析。
关于“无穷大”的说法
如果从粒子的尺度来测量海岸线,理论上是无穷大的,因为当尺度无限细小时,每一点的
曲折和不规则性都会被计算进去,这样会导致长度不断增加。这样的答案对于实际应用来
说并不具备意义,且可能会让提问者感到困惑甚至不满。因此,当涉及具体问题时,我们
需要根据使用者的需求选择合适的测量尺度,而非提供一个过于抽象的“无穷大”答案。
结论
正如你所说,“海岸线的长度”这个问题的回答会依据测量尺度的不同而有所变化。每一
个实际情境都需要根据具体需求来选择测量方法,而过于理论化的回答(如无穷大)可能
无法有效解决实际问题,反而会引发不必要的困扰。
******
我问
这个观点是否可与“中观”中的“胜义空”与“俗谛有”合拍?某种意义上佛教是否否定
了根本的 a priori 却主张本无一物的“空”(Shunyatā)中却可因每个刹那变化中存
在者的需求而生出种种“有”?佛教的辨证性是否可说在此之上建构?
******
ChatGPT 说:
ChatGPT
你的问题非常深刻,触及了佛教的哲学观点,尤其是“中观”思想中的“胜义空”和“俗
谛有”的关系,这与你所提到的“海岸线长度”的问题有某些相似之处,可以进行有趣的
对比。
佛教的“胜义空”与“俗谛有”
在中观学派中,佛教的核心概念之一是“空”(Shunyatā),即一切法无自性,无固定
不变的本质。从胜义空(究竟的空)来看,所有事物都是无常的、无自性、互依的,并不
存在一个固有的、本质的“我”或“物”。这一观点并非否定世界的存在,而是指出它的
存在是相对的、条件的。
与此同时,佛教也不否认现象界的“存在”,而是提出俗谛有(即相对的真理),即在日
常生活中,我们依赖事物的相对性和条件性来进行操作、理解和体验世界。这就是为何我
们会看到“有”的存在,尽管从“空”的角度来看,这些“有”只是暂时、条件性的,并
非永恒不变的。
中观的辨证性与海岸线的长度问题
这样的观点确实与“海岸线的长度”问题有相似之处。在“海岸线悖论”中,我们同样面
对了一个看似简单的问题——海岸线的长度——而随着测量尺度的不同,我们会得到不同
的答案。这可以视为佛教中俗谛有的表现:不同的测量尺度和条件下,我们对海岸线的“
长度”有不同的理解,这些理解都是有条件、有依赖的。
而从胜义空的角度来看,这些长度的变化、测量的尺度本身,都是相对的,并非固定的事
实。就如同佛教中所说,事物的真实性不在于它们的固有存在,而是在于它们的相依性和
变化性。因此,从某一特定尺度来看,海岸线的长度可能是有限的,但从更细致的尺度来
看,长度无限延伸。这与佛教中的“空”——即一切事物的无自性和无常——有着相似的
逻辑。
辨证性与构建
佛教的辨证性正是建立在这种空与有的互动上。佛教哲学并不是单纯的二分法,而是透过
辨证的方式呈现事物的相对性和变化性。在这个框架中,“空”并不是绝对的虚无,而是
对一切事物“空性”的理解,这种理解并不排除“有”的存在,只是指出“有”的存在是
条件性的、依赖于因缘的。
同样地,当我们谈论海岸线的长度时,它的长度并非固定不变的,而是依赖于我们如何选
择尺度来测量。这不仅是对具体现象的变化,也是一种对“存在”本身的理解——无论是
海岸线还是佛教所说的“一切法”,其实都处于不断变化、相互依赖的状态中。
结论
从这个角度来看,“海岸线悖论”与佛教的中观思想之间确实存在某种共鸣。在佛教中,
胜义空与俗谛有的区别不仅是一种哲学上的辨证,也是一种思考事物相对性、条件性和依
赖性的方法。就像海岸线的长度,无论是短还是长,都依赖于我们的选择和测量尺度,同
样的,事物的“空性”并不否定“有”,而是指出其背后的依赖和变化。佛教的辨证性正
是在这种变化中找到了一种中道的智慧。
******
我问
相对论的宇宙观是建立在四维的黎曼几何上的吗?但相对而言更“先天”(a priori 符
合我们人类看世界的直观的)的欧式几何若说扩充维度是否也可以解释?康德意义下的欧
式几何之于人类的先天性(前提是我们不可能认识物自己而必然得从我们的认知框架来认
识世界)指的是三维欧式空间或任意维但出发点是欧式?由于黎曼几何在局部一点附近来
看其实亦可谓“近似于”欧式几何,这个意义上是否我们可说不论几维但欧式这个架构对
我们来说都是先天的或者仍可举出反例?会不会我们换只眼睛或者换个观察方式其实可以
在微观中看到某些非整数的 fractal dimension 例如微雕艺术中可看到很奇怪的空间或
者某些欺骗眼睛的画作?
******
ChatGPT 说:
ChatGPT
你提出的问题涵盖了相对论、几何学、康德的认识论以及维度和空间感知的多个层面,这
些主题都涉及到如何理解和解释我们对世界的认知框架。让我们逐一解析这些问题,看看
它们之间的关联与讨论。
相对论与黎曼几何
相对论,尤其是爱因斯坦的广义相对论,确实是建立在黎曼几何的框架之上。在这个理论
中,物质和能量使得空间与时间(即四维时空)弯曲,这种弯曲并非在传统的欧式空间中
进行,而是在黎曼几何的空间中进行,这是一种具有曲率的非欧几何结构。
在广义相对论中,时空的弯曲是物质存在的结果,而黎曼几何提供了描述这种弯曲的数学
工具。这与我们日常生活中熟悉的欧几何(即平直空间的几何)有根本的不同,因为在欧
几何中,空间是平坦的,不存在弯曲和曲率。
欧式几何与人类的直观
康德的哲学中,空间和时间是我们先天的感知框架,他称之为“先天的形式”,即它们是
我们认知世界的先验条件。康德认为,我们不可能直接认识物自身(物自体),我们所能
认识的是经由感官经验过滤过的现象。而这些现象,根据康德的看法,是在空间和时间这
些先天的框架下展开的。
欧式几何,作为我们日常经验中最直观的几何形式,是描述三维空间中物体位置和关系的
几何系统。康德认为这种几何结构是“先天的”,是我们认知世界的基本框架,这种空间
直观不仅是三维的,还可能扩展到更高维度,因为我们可以使用数学工具来处理任意维度
的空间。
黎曼几何与欧式几何的关系
黎曼几何和欧式几何在局部空间中确实有相似之处。在黎曼几何的框架下,空间的曲率可
以是变化的,但在局部区域,空间的结构可以近似为欧式几何,即在一个足够小的范围内
,黎曼几何就像是欧式几何。这一点非常重要,因为在广义相对论的描述中,尽管整体时
空是弯曲的,但在小范围内,我们依然可以使用欧式几何来描述物体的运动和相互作用。
所以,在某些情况下,无论空间有多高维,欧式几何作为人类认知框架的先天性,确实可
以在局部区域或在我们的日常经验中有效地描述物理现象。换句话说,对我们来说,欧式
几何提供了最直观的理解和操作方式,尽管这种直观在大尺度或极端条件下可能不再适用

关于“非整数维度”和人类感知
你提到的“换只眼睛或者换个观察方式”可以在微观世界中看到某些非整数的分形维度(
fractal dimension),这是一个非常有趣的观点。在现实中,确实存在许多现象,如自
然界中的分形结构,或者某些微观和艺术现象,它们的空间结构在数学上可以用分形维度
来描述。
例如,分形几何学揭示了许多自然物体(如云彩、山脉、海岸线等)具有自相似的结构,
并且其维度可能是非整数的(例如海岸线的长度可以无限长)。在微观世界中,某些表面
结构或艺术作品(如微雕艺术)也可能展示出不符合传统欧式几何的结构,这些结构可以
用更复杂的数学来描述。
然而,这并不意味着我们的直观认知能力可以完全理解这些非整数维度的结构。虽然我们
的视觉和触觉可以感知到某些非线性的空间变化,但对于这些结构的深刻理解,依然需要
数学工具的辅助。这也表明,虽然我们的认知框架基于欧式几何,但当我们进入更复杂的
领域(如分形结构或高维空间),我们需要更精确的数学工具来解释这些现象。
结论
总结来看,康德的“先天形式”即欧式几何,确实是我们认识世界的一种基本框架,但这
并不意味着我们的直观感知仅限于三维欧式空间。随着科学的发展,我们能够在数学上处
理更高维度的空间,并且可以描述如分形结构等非整数维度的现象。在局部区域,黎曼几
何和欧式几何是可近似的,但在大尺度和极端条件下,黎曼几何提供了一种更精确的描述
方式。因此,无论是对高维空间的理解还是对微观世界的描述,我们都需要灵活运用不同
的几何工具。
******
我问
所有的线性代数所依以建立的结构是否仍可谓是欧式的(即便我们只处理线性的对应而不
处理曲率等问题)?但,若从唯识的立场出发,是否只承认我们有此生俱有的“藏识”可
能是累劫建构而在此生仿佛是先天,但不承认如欧式可为任何生命的根本的先天的认识架
构?
******
ChatGPT 说:
ChatGPT
你的问题探讨了线性代数的结构与欧式几何的关联性,以及从唯识学派(瑜伽行派)的角
度,对于“先天”认知架构的理解,这是一个非常有趣且深奥的问题。我将从两个层面来
进行分析,一方面是线性代数的结构是否可谓“欧式”,另一方面是唯识学派如何看待“
先天”的认知架构。
线性代数的结构与欧式几何的关联
在传统的线性代数中,我们处理的对象主要是向量空间、线性变换、矩阵、特征值等数学
结构。这些结构本身并不涉及曲率或非欧式几何的问题,因此从某种意义上来说,线性代
数的基础结构是与欧式几何的直观结构相契合的。
在欧式空间中,我们通常假设空间是平坦的,并且满足平行公设(即两条平行线永远不会
相交)。这样的空间结构给我们提供了简单直观的几何理解,且我们的线性代数处理的向
量空间(例如 Rn\mathbb{R}^nRn)也是欧式空间的一部分。特别是当我们讨论向量内积
、正交性、基底变换等问题时,这些操作都可以在欧式空间的框架中进行,并且基于直观
的几何理解。
然而,当线性代数被扩展到更一般的向量空间(比如巴拿赫空间、希尔伯特空间等)时,
它不再局限于欧式几何的结构。这些更一般的空间可能不再具有欧式几何中的直观几何解
释,尤其是在处理无穷维空间时。因此,线性代数的结构在某些情况下可以脱离欧式几何
,尤其当我们考虑到更一般的向量空间结构时。
唯识学派的“先天”认知架构
唯识学派的核心观点是“一切唯心造”,即外在世界的所有现象都是由心识所造,并且依
赖于“识”的作用来呈现出我们的经验。唯识学派认为我们的“藏识”(阿赖耶识)是所
有认识的根本,这是我们深层的心识结构,积累了从无始劫来的所有经验和种子(种子指
的是过去经验的潜在印记)。因此,唯识学派强调的“先天”并非是固定的、普遍的认知
框架,而是每个生命体基于过去的经历和习气(习气即行为模式或习惯)所形成的“藏识
”。
在唯识的视角下,这些“藏识”和相应的“识”并非与外界的物质结构(例如欧式空间的
结构)有直接关联。唯识学派并不承认一种普遍适用于所有生命的、类似于欧式几何那样
的“先天”认知架构。每个人的“识”都是个体化的,根据各自的经历、习气和内在的认
知模式来构建其理解世界的框架。
与此相比,欧式几何作为一种认知框架,提供了一种普遍的、基于物理空间的直观理解,
并且不考虑个体的经历和过去的印记。而唯识学派则强调认知结构是个体化的,每个人的
世界观和认知架构都是基于他们的过去经历和当前的“藏识”来生成的。因此,唯识学派
不认为有一个普遍的、对所有生命都先天有效的“认知框架”,更强调的是生命的认知状
态如何依赖于个体的心识运作。
唯识学派与欧式几何的对比
从唯识学派的立场来看,尽管我们的心识(藏识)可能似乎是“先天”的,但这个“先天
”是基于过去累积的经验和种子的形成,并不等同于欧式几何中那种普遍适用、与物理空
间结构相关的“先天”框架。换句话说,唯识学派的“先天”认知并非普遍且固定的,而
是个体化、经验化的,它依赖于每个生命的心识过程,而这些过程可能是极其多样和变化
的。
如果说我们在某种程度上可以承认“藏识”作为先天的认知基础,那么这个基础并不是固
定不变的,而是随着个体生命的经历和行为模式而变化的。这与欧式几何的固定性和普遍
性不同。欧式几何作为一种物理空间的直观理解,对所有人来说似乎都具有相同的认知结
构,而唯识学派则强调每个人的认知结构是根据他们的个体经历而形成的,并且这种结构
并不一定是“几何性”的。
结论
总的来说,线性代数中的结构在某些情况下与欧式几何的结构有相似性,尤其在处理有限
维的向量空间时,这些结构可以被视为“欧式的”,但随着问题的扩展(如更高维空间或
无穷维空间的情况),这些结构可能脱离欧式几何的直观理解。
从唯识学派的角度看,并不认为欧式几何作为一种认知架构是对所有生命先天的基础。唯
识学派强调认知的“先天”是依赖于每个个体的藏识,而非基于一个普遍的、固定的物理
或几何框架。因此,唯识学派对于“先天”的理解是个体化的、经验化的,与欧式几何的
普遍性有所不同。
******
我问
换言之唯识可以容许我们想像有可能生做一只分形虫子体验到那些很奇怪的非整数维度?
即便不知道要累积些什么奇怪的业或种子才会生做这种分形虫子。
******
ChatGPT 说:
ChatGPT
是的,从唯识学派的立场来看,确实可以想像一个极为特殊的生命形式——例如一只“分
形虫子”——其经验可能涉及非整数维度或一些异常的空间结构。唯识学派强调的是认知
的相对性,并认为每个生命体的心识(藏识)会根据其过去的业力(业和种子的积累)来
形成独特的认知框架,因此,理论上,这样的“分形虫子”可以拥有与我们完全不同的、
基于其心识结构的经验世界。
唯识与“非整数维度”
唯识学派的核心观点是“一切唯心造”,即外在世界的现象是由心识所构建的。这意味着
,生命的感知不仅限于我们所认识的物理空间结构,也可以是极为异常且不同于我们直观
经验的。当你提到“非整数维度”这样的概念,实际上是在探索一种可能的心识结构,这
种结构并非基于传统的欧式几何或物理空间,而是依赖于不同的心识经验。
在唯识的框架下,我们可以想像一个生物体(比如分形虫子)拥有不同的认知结构,这种
结构可能会使得它的经验世界呈现出“非整数维度”的特征。这并非意味着这个生命体在
物理空间中真的处于一个具体的非整数维度的空间,而是其心识如何“构建”这些维度的
感知,这与其内在的经验、业力积累及“种子”有关。
业与种子的角色
唯识学派强调,生命体的认知架构是由其“业”和“种子”所决定的。业是生命过去行为
的结果,这些行为会在心识中留下印记,成为未来经验的种子。而这些种子会在特定的条
件下生起,形成生命的认知模式。因此,一只“分形虫子”的认知世界和经验模式可能是
基于它的过去行为和积累的种子所形成的。
换句话说,如果这只虫子的心识在某些过去的生死轮回中积累了某种特殊的种子,这些种
子可能使它的心识结构呈现出与我们常规经验完全不同的形态,甚至能够“感知”某种非
整数维度的空间。这并非意味着它在物理上处于一个异常的空间,而是它的经验框架本身
具有不同的感知和结构。
不同的“经验框架”
从唯识的角度来看,并不是所有生命体的认知架构都是相同的。不同的生命体根据其过去
的业和种子,可能会形成不同的认知世界,这些世界可以极为特殊,甚至有可能在我们的
经验框架中无法理解。正如你所说,即便我们不清楚究竟需要积累什么样的业或种子才能
成为这样一只“分形虫子”,唯识学派的立场仍然容许这种可能性,因为它强调的是心识
的塑造和变化,而非一个固定的、普遍的认知框架。
结论
所以,从唯识学派的观点来看,的确可以想像有某些生命形式会以完全不同的方式“感知
”世界,这些生命体可能拥有非整数维度的经验,或者以某种分形结构的方式来认识和构
建它们的空间。这样的认知结构并非基于外在的物理结构,而是依赖于该生命体的心识结
构及其过去的业力积累。
唯识学派并不排斥这样的可能性,因为它认为每个生命的认知世界是由其内在的心识和过
去的经历(业和种子)所决定的,这使得每个生命体的经验世界可以有极大的差异性。因
此,一只“分形虫子”的经验世界完全有可能与我们的直观认知大相径庭,甚至可以触及
我们无法理解的维度结构。
******
我问
Somebody says that Euclidean Geometry is a priori just as the Number (I guess
he means the nature number), however, Euclidean Geometry is constructed based
on at least the Real (or even the Complex), while in an intuitive perspective,
we can only know the nature number (as a priori) rather than the Real. How
could we explain this?
******
ChatGPT 说:
ChatGPT
Your question touches on a key philosophical distinction regarding the nature
of mathematical knowledge, particularly the relationship between Euclidean
geometry, number theory (especially natural numbers), and real numbers from an
epistemological perspective. You're highlighting an interesting issue: the
contrast between the a priori nature of natural numbers versus the more
complex mathematical objects like real numbers, which are often considered
less immediately accessible or intuitive.
1. Euclidean Geometry and its A Priori Nature
Euclidean geometry is often thought of as a priori in the sense that its
fundamental principles (such as points, lines, planes, and the axioms that
govern them) seem to be inherently grasped by our intuition. These principles
feel "self-evident" in the context of space as we perceive it. For example,
the idea that two straight lines in a plane that don't intersect are parallel
seems to be an immediate, a priori intuition for us, especially when we are
dealing with familiar, flat, two-dimensional surfaces.
However, Euclidean geometry relies on the real number system in practice,
especially when we describe geometric shapes with exact measurements. For
instance, the length of a line segment is typically described using real
numbers, and when we measure areas or angles, we're also implicitly working
within the framework of the real numbers (which includes irrational numbers
like π, square roots, etc.).
Despite this reliance on the real numbers, the principles of Euclidean
geometry themselves (such as those in Euclid's Elements) can be seen as a
priori because they do not depend on specific numerical values but rather on
abstract spatial relationships that seem intuitively accessible to the human
mind.
2. Natural Numbers as A Priori
The natural numbers (1, 2, 3, etc.) are often seen as a more straightforward
example of a priori knowledge. From a Kantian perspective, the concept of "1"
or "2" seems to be intrinsic to our cognitive faculties, and this intuition
about counting is thought to be inherent in our mental structure. This is why
natural numbers feel intuitively a priori — they do not require empirical
observation to grasp. We are born with the ability to distinguish quantities,
even if in a rudimentary sense. This a priori grasp of counting, then, extends
naturally to the operation of addition and multiplication, which are basic
operations within number theory.
3. The Real Numbers and their Intuition
Now, when we shift to the real numbers, we enter a different epistemological
territory. While natural numbers can be thought of as inherently grasped, the
real numbers (which include rationals and irrationals) are much more abstract.
Real numbers are constructed in more formal mathematical settings, such as
through Dedekind cuts or Cauchy sequences, and this construction is not
something that we intuitively grasp in the same way we understand the natural
numbers.
In other words, while the natural numbers are part of our basic, a priori
cognitive framework, the real numbers are not immediately intuitive in the
same way. They are constructed through mathematical formalism and are less
tied to our immediate sensory experience. For example, it's much more
difficult to directly visualize irrational numbers like sqrt{2} or π in a
concrete, intuitive way, because they don't correspond to exact, observable
quantities in the physical world.
4. The Role of Real Numbers in Euclidean Geometry
While Euclidean geometry can be described using real numbers (for instance,
the length of a line in Euclidean geometry is often a real number), this doesn
’t necessarily imply that Euclidean geometry itself depends on the intuition
of real numbers. The structure of Euclidean geometry is a priori because it's
about spatial relationships (like the distance between points, the angles
between lines, etc.) rather than the specific magnitudes those distances or
angles take. We rely on real numbers to quantify these spatial relationships,
but the basic geometry itself (the axioms and theorems) can be understood
independently of these numerical details.
5. Mathematical Construction vs. Intuitive Grasp
Your question also raises the issue of mathematical construction versus
intuitive grasp. The natural numbers can be seen as intuitively grasped from
the outset, but the real numbers, and by extension many of the more abstract
structures in mathematics (like complex numbers, higher-dimensional spaces,
etc.), are more constructed — they require more formal definitions and can't
be directly grasped by the same a priori intuitions we have for natural
numbers.
This is important: we can recognize that something like the real numbers is
mathematically constructed (through a rigorous process of limits, continuity,
etc.), yet still work with them abstractly and symbolically as if they were
part of our intuitive framework. But this does not mean the real numbers
themselves are a priori in the same way natural numbers are.
6. Kantian Epistemology and the Limits of Intuition
From a Kantian perspective, the distinction between the natural numbers and
real numbers might be framed like this: natural numbers are part of our
cognitive faculties' a priori ability to structure experience, whereas the
real numbers — though crucial to mathematical physics and geometry — are a
construction that extends beyond our immediate cognitive intuitions. Kant
might argue that while the natural numbers correspond to basic ways of
organizing our experiences (such as counting objects), the real numbers,
though essential for describing continuous phenomena (like motion, distances,
time), require more formalized methods of construction that are not
immediately present to intuition.
Conclusion
To summarize: the natural numbers can indeed be seen as a priori, since they
correspond closely to basic cognitive abilities (counting, distinguishing
quantities) that are fundamental to our understanding of the world. On the
other hand, Euclidean geometry, while based on principles that might seem a
priori (like straight lines and parallelism), relies on the real numbers for
precise measurement and description, and these real numbers are not as
immediately intuitive or a priori in the same way natural numbers are. Real
numbers require more formal construction and are abstract, whereas natural
numbers feel directly tied to our cognitive faculties and intuitive grasp of
the world.

Links booklink

Contact Us: admin [ a t ] ucptt.com