[试题] 105-1 夏俊雄 偏微分方程式一 第四次小考

楼主: xavier13540 (柊 四千)   2025-04-13 11:09:33
课程名称︰偏微分方程式一
课程性质︰数学系选修
课程教师︰夏俊雄
开课学院:理学院
开课系所︰数学系
考试日期(年月日)︰2016/12/22
考试时限(分钟):50
试题 :
1. (40 points) Solve the following equation:
\[\begin{cases}
x_1 u_{x_2} - x_2 u_{x_1} = u \text{ in }\Omega,\\
u = g \text{ on }\Gamma,
\end{cases}\]
where Ω is the quadrant $\{x_1 > 0, x_2 > 0\}$ and $\Gamma = \{x_1 > 0,
x_2 = 0\}$.
2. (40 points) Solve the following equation:
\[\begin{cases}
u_{x_1} + u_{x_2} = u^2 \text{ in } \Omega,\\
u = g \text{ on } \Gamma,
\end{cases}\]
where Ω is the half space $\{x_2 > 0\}$ and $\Gamma = \{x_2 = 0\}$.
3. (40 points) Solve the following equation:
\[\begin{cases}
uu_{x_1} + u_{x_2} = 1,\\
u(x_1, x_1) = \frac12 x_1.
\end{cases}\]

Links booklink

Contact Us: admin [ a t ] ucptt.com