[试题] 105上 傅皓政 逻辑 期中考

楼主: yinyang102 (いんいんえん)   2016-11-08 00:50:44
课程名称︰逻辑
课程性质︰通识A4
课程教师︰傅皓政
开课学院:
开课系所︰
考试日期(年月日)︰2016.11.07
考试时限(分钟):90
试题 :
一、请建构命题逻辑语言(提示:包括符号与形构规则两个部分)。(10%)
  (Construct a suitable language for propositional logic. Hint: two parts
  involved, alphabets and formation rules)
二、请判断下列句式哪些是合宜的句式?哪些是不合宜的句式?(10%)
  (Please consider the following formulae and distinguish the well-formed
  formulae from ill-formed ones.)
  (a) P → ┐Q → R
  (b) ┐┐H┐
  (c) ┐┐A Λ B
  (d) (L V M Λ N) → (M V M)
  (e) (┐G Λ D) V (D ←→ ┐G V D)
  (f) H ; ┐M ←→ N
  (g) (D ←→ (E Λ ┐F)) ←→ E
  (h) (K → ┐L) Λ (M ←→ L)) Λ ┐K
  (i) A Λ (C → ┐B)
  (j) →HK
三、请判断下列陈述的真假,并且分别以T与F代表“真”与“假”。(10%)
  (Please judge the following statements which are true or false. Notice,
  please use the symbols "T" and "F" which stand for true and false
  statements respectively.)
  1. 有效论证的前提中至少必须有一个是实际上为真。
  2. 前提与结论一致的论证一定是有效论证。
  3. 前提与结论实际上为假的论证一定是无效论证。
  4. 前提实际上为真而且结论实际上为假的论证可能是有效论证。
  5. 结论为恒真句的论证可能是无效论证。
  6. 前提与结论一致的论证可能是无效论证。
  7. 前提与结论都是偶真句的论证可能是有效论证。
  8. 结论是矛盾句的论证一定是无效论证。
  9. 前提与结论不一致的论证一定是有效论证。
  10. 前提实际上为假而且结论实际上为真的论证一定是有效论证。
四、请判断下列句式哪些是恒真句、矛盾句或者是偶真句。你可以使用任何学过的方法,
  包括真值表法、简易真值表法或真值树法,必须列出演算过程。(15%)
  (Using some method (e.g. truth table, short-cut or tableaux system) shows
  that each of the following formulae is tautology, contradiction, or
  indeterminate formula. Computational process is required.)
  (a) A → ((B Λ A) → B)
  (b) (H → G) → (G → H)
  (c) ┐((P → (Q → R)) → ((P → Q) → (P → R)))
五、请判断下列各题中的两个句式之间是蕴涵或是等值关系。如果是蕴涵关系,以φ╞ψ
  表示;若为等值关系,则以╞φ←→ψ表示,必须列出演算过程。(15%)
  (Using some methods determine the semantic relation between the following
  formulae. If the entailment relation holds then show them of the form
  φ╞ψ. On the other hand, show them of the form ╞φ←→ψ if they are
  equivalent. Computational process is required.)
  (a) (L → M) → N ; (M → L) → N
  (b) P Λ (Q V R) ; (P Λ Q) V (P Λ R)
  (c) ((B Λ C) → D) V (C → ┐D) ; B → D
六、请写出等值于真值表中语句φ的DNF及CNF。(10%)
  (Find out the DNF and CNF each which is equivalent to the following
  formulae φ.)
  (a)            (b)
  ┌─┬─┬─┬─┐     ┌─┬─┬─┬─┐
  │P│Q│R│φ│     │P│Q│R│φ│
  ├─┼─┼─┼─┤     ├─┼─┼─┼─┤
  │T│T│T│T│     │T│T│T│F│
  ├─┼─┼─┼─┤     ├─┼─┼─┼─┤
  │T│T│F│F│     │T│T│F│T│
  ├─┼─┼─┼─┤     ├─┼─┼─┼─┤
  │T│F│T│T│     │T│F│T│F│
  ├─┼─┼─┼─┤     ├─┼─┼─┼─┤
  │T│F│F│T│     │T│F│F│T│
  ├─┼─┼─┼─┤     ├─┼─┼─┼─┤
  │F│T│T│T│     │F│T│T│F│
  ├─┼─┼─┼─┤     ├─┼─┼─┼─┤
  │F│T│F│T│     │F│T│F│F│
  ├─┼─┼─┼─┤     ├─┼─┼─┼─┤
  │F│F│T│T│     │F│F│T│T│
  ├─┼─┼─┼─┤     ├─┼─┼─┼─┤
  │F│F│F│F│     │F│F│F│T│
  └─┴─┴─┴─┘     └─┴─┴─┴─┘
七、请以真值树法证明下列语法序列是否为有效论证,若为无效论证请显示其反例结构。
  (20%)
  (Please use tableaux system to prove whether each of the following
  argument is valid. And specify a counterexample if it is invalid.)
  (a) P → (┐Q V R) ; Q ├ P → R
  (b) ┐(K Λ L) → M, K V ┐K ├ ┐(K V ┐L)
八、当我们谈到“不可能”这个语词时,其实有不同的意义,请说明“现实上不可能”、
  “物理上不可能”和“逻辑上不可能”有何不同?。(10%)
  (Please explicate the difference among three kinds of "impossibility"
  which are actually impossible, physical impossible and logically
  impossible respectively.)

Links booklink

Contact Us: admin [ a t ] ucptt.com