[试题] 104下 江金仓 高等统计推论二 第三次小考

楼主: SamBetty (sam)   2016-08-16 20:29:13
课程名称︰高等统计推论
课程性质︰应数所数统组必修
课程教师︰江金仓
开课学院:理学院
开课系所︰数学系
考试日期(年月日)︰2016/5/19
考试时限(分钟):16:30~17:20
试题 :
1. (15%) Let X ,...,X be a random sample from the uniform distribution
1 n
U(α-β,α+β) where α and β are unknown parameters. Find the uniformly
minimum variance unbiased estimator of α/β.
2. (10%) Let X ,...,X be a random sample from Poisson(λ) and λ have a
1 n
Gamma(α,β) distribution. Find the Bayes estimator of λ under the absolute
error loss function.
^ ^
3. (15%) Let δ be the Bayes estimator with the constant risk. Show that δ is
the minimax estimator.
4. (5%)(15%) State the necessary assumptions for the asymptotic normality of
maximum likelihood estimator and show this asymptotic property.
5. (15%) Let X ,...,X be a random sample from a population with probability
1 n
θ-1
density function f (x|θ)=θx , 0<x<1, 0<θ<∞. Derive the asymptotic
X
distribution of the maximum likelihood estimator of θ.
6. (15%) Let X ,...,X be a random sample from f(x-θ), where f(u) is symmetric
1 n
^
around zero. Let θ be the maximum likelihood estimator of θ and the
^ n
M-estimator θ be the minimizer of Σ ρ(X -θ), where ρ(u) is strictly
M i=1 i
convex with dρ(u)/du = φ(u). Compute the asymptotic relative efficiency of
^ ^
θ and θ.
M
7. (10%) Show that a uniformly most powerful level α test is an unbiased test.

Links booklink

Contact Us: admin [ a t ] ucptt.com