课程名称︰密码学导论
课程性质︰数学系选修
课程教师︰陈君明
开课学院:理学院
开课系所︰数学系
考试日期(年月日)︰2015/3/3
考试时限(分钟):30分钟左右(最后一节课)
试题 :
Student ID: ______ Name: ______
s = ___ = 12 -“the last digit of your ID”, 3 ≦ s ≦ 12
*
1) Consider the group G = (Z , ×mod 17)
17
-1
a) s (the multiplicative inverse of s) is ___
b) o(s) (the order of s) = ___
c) The index [G : < s >] = ___
d) Explain why G is a cyclic group
*
2) Consider the homomorphism f:(Z , + mod 16) → (Z , ×mod 17) defined by
16 17
f(1) = s
a) f(0) = ___ b) f(2) = ___ c) Is f an isomorphism? Explain
3) |GL (Z )| = ____, |SL (Z )| = ____
2 17 2 17
4) Consider the symmetric group S :
4
-1
(1 2 3 4) (1 2 3 4) (1 2 3 4)
a) |S | = ___ b) ( ) = _____ c) ( )。( )= ___
4 (3 1 4 2) (3 1 4 2) (2 1 4 3)
5) Suppose H is a subgroup of G, prove that two left cosets g H = g H if and
1 2
-1
only if g g ∈ H
1 2
注:虽然小考题目会放在ceiba上,但小考前应该不会放,所以我还是PO了,给以后修课学
生参考