课程名称︰偏微分方程式一
课程性质︰数学研究所基础课
课程教师︰林太家
开课学院:理学院
开课系所︰数学系、数学研究所、应用数学科学研究所
考试日期︰2014年12月30日(二),10:20-12:10
考试时限:110分钟
试题 :
Test 3 12/30/2014
1. (20%)
Let u solve
u_tt - △u = 0 in R^3 ×(0,∞)
u = g, u_t =h on R^3 ×{t=0},
where g,h are smooth and have compact support. Show there exists a constant C
such that
|u(x,t)|≦C/t (x∈R^3, t>0)
2. (20%)
Solve 2 2
u_tt - c u_xx = x for 0<t and all x
u = x, u_t = 0 for t = 0.
3. (20%) 2
(Equipartition of energy). Let u∈C(R ×[0,∞)) solve the initial-value
problem for the wave equation in one dimension:
u_tt - u_xx = 0 in R ×(0,∞)
u = g, u_t = h on R ×{t=0}.
1 ∞
Suppose g,h have compact support. The kinetic energy is k(t):=