[试题] 103上 林太家 偏微分方程式一 Test3

楼主: t0444564 (艾利欧)   2014-12-31 14:37:47
课程名称︰偏微分方程式一
课程性质︰数学研究所基础课
课程教师︰林太家
开课学院:理学院
开课系所︰数学系、数学研究所、应用数学科学研究所
考试日期︰2014年12月30日(二),10:20-12:10
考试时限:110分钟
试题 :
                 Test 3              12/30/2014
1. (20%)
 Let u solve
               u_tt - △u = 0 in R^3 ×(0,∞)
               u = g, u_t =h on R^3 ×{t=0},
 where g,h are smooth and have compact support. Show there exists a constant C
 such that
               |u(x,t)|≦C/t (x∈R^3, t>0)
2. (20%)
 Solve                2    2
               u_tt - c u_xx = x for 0<t and all x
               u = x, u_t = 0 for t = 0.
3. (20%)               2
 (Equipartition of energy). Let u∈C(R ×[0,∞)) solve the initial-value
 problem for the wave equation in one dimension:
               u_tt - u_xx = 0 in R ×(0,∞)
               u = g, u_t = h on R ×{t=0}.
                                 1 ∞
 Suppose g,h have compact support. The kinetic energy is k(t):=

Links booklink

Contact Us: admin [ a t ] ucptt.com