[问卦] 有K理论的八卦吗

楼主: yw1002 (kenny)   2018-05-27 15:22:12
http://www.books.com.tw/products/CN10806345?loc=P_004_052
代数K理论在代数拓扑、数论、代数几何和算子理论等现代数学各个领域中的作用越来越
大。这门学科的广泛性往往使人感觉望而生畏。本书以1990年秋天Maryland大学讲义为基
础,不仅为数学领域研究生提供很好的学习代数K理论的基本知识,也讲述其在各个领域
的应用。全书结构完整,了解代数基础知识、基本代数拓扑和几何拓扑知识就可以完全读
懂这本书。该书也涉及到不少代数拓扑、拓扑代数和代数数论的知识。最后一章简明地介
绍了循环同调以及其与K理论的关系。目次︰环的K0群;环的K1群;范畴的K0、K1群,
MilnorK2群;QuillenK理论和+-结构;循环同调及其与K理论的关系。
另外关于K理论在物理学上的应用:
https://en.wikipedia.org/wiki/K-theory_(physics)
This conjecture, applied to D-brane charges, was first proposed by Minasian &
Moore (1997). It was popularized by Witten (1998) who demonstrated that in
type IIB string theory arises naturally from Ashoke Sen's realization of
arbitrary D-brane configurations as stacks of D9 and anti-D9-branes after
tachyon condensation.
维腾等人猜想弦论从D膜空间中的快子凝聚产生
Such stacks of branes are inconsistent in a non-torsion Neveu–Schwarz (NS)
3-form background, which, as was highlighted by Kapustin (2000), complicates
the extension of the K-theory classification to such cases. Bouwknegt &
Varghese (2000) suggested a solution to this problem: D-branes are in general
classified by a twisted K-theory, that had earlier been defined by Rosenberg
(1989).
D膜可用K理论来分类
作者: GaussQQ (亮)   2018-05-27 15:25:00
zeta function的special value都有跟k group有关系 很有趣当初要构造k3以上的 耗费不少苦心 那篇文章在annals 作者还得fields medal的样子
楼主: yw1002 (kenny)   2018-05-27 15:29:00
哪作者?
作者: GaussQQ (亮)   2018-05-27 15:29:00
台大有老师开过k theoryDaniel Quillen我也只道皮毛 有错请更多更正

Links booklink

Contact Us: admin [ a t ] ucptt.com