: 微积分
: [88年度]
: 1.c(x),s(x)为x的函数,s'(x)=c(x),c'(x)=-s(x),s(0)=0,c(0)=1
: 试证s(x)=sin(x),c(x)=cos(x)
s'(x) = c(x), s''(x) = c'(x) = -s(x)
s''(x) + s(x) = 0
令 s(x) = e^(ax)
(a^2)e^(ax) + e^(ax) = 0, e^(ax) > 0, a^2 + 1 = 0, a = +-i
s(x) = be^(ix) + ce^(-ix) = bcos(x) + ibsin(x) + ccos(x) - icsin(x)
s(0) = b + c = 0, b = -c
s'(x) = c(x) = ibe^(ix) - ice^(-ix), c(0) = ib - ic = 1
ib + ib = 2ib = 1, b = -i/2, c = i/2
s(x) = bcos(x) + ibsin(x) - bcos(x) + ibsin(x) = 2ibsin(x) = sin(x)
c(x) = s'(x) = cos(x)
话说我听说这种解法一开始是用偏微分方程导出来的 可惜我不会导...
: 2.求e^(-x^2)对x的积分
这是很经典的题目 要记得用夹挤去做就是了 直接换成极座标 然后取r的范围为0到无限大是不严谨的
补充: 这题也可以用gamma function去做
因为 原式 = (1/2)*gamma(1/2) = [(pi)^(1/2)]/2