不知道这样算对不对
因为不管第几抽,有抽到就是1/30的机率,所以抽到一个就乘上1/30
然后最后一个没抽到的池看还剩几抽就再乘上n/30(n是剩下的抽数)
用2抽为例
抽到2个彩球:1/30*1/30*30/30 (最后一抽有抽到相当于最后没抽到的池剩30抽,其实乘
以1跟没乘没差,列出来只是让算式统一格式)
抽到1个彩球,最后一池剩30抽(第二抽抽到的意思):1/30*30/30
抽到1个彩球,最后一池剩29抽(第一抽抽到的意思):1/30*29/30
没抽到(最后一池剩28抽):28/30
所以彩球数量期望值是2*1/30*1/30 + 1*1/30*(1 + 29/30) + 0*28/30
抽数更多也是用同样方式穷举(只要注意不要穷举到不可能存在的例子,例如60抽抽到1个
彩球最后一池剩29抽之类的),就能算出彩球期望值,后面就好算了,但是实在太麻烦我
懒得算,所以只把想法提出来而已