原文恕删
因为我不是复变量和代数专长,所以没办法用数学或物理解说型月的虚数,
和科学界使用的虚数关联是什么,
不过可以简述一下虚数对於哲学或文学的启发。
虚数问题的由来普遍认为是一个面积问题:
" 将10拆成两个正数,使其相乘为40 ",
写成数学式就是求a与b,使a+b = 10 且 a*b = 40。
这个a与b是不可能在实数中找解的,
但若真的要用想像力来硬给出两个数,这两个数存不存在有没有用不重要,
则这两个数可以写成 5±(√15)i 。
以往虚数(复数)被认为只是代数上的理论,没有实际物理或工程用途,
但从高斯用复数理论证明代数基本定理(N次多项式必有N个根),
将代数与几何结合以后,物理开始关注复数的实用性。
到了傅立叶发明傅立叶转换以后,工程更是大量使用复数的理论。
科学发展的起源,并不是一个定理推导另一个定理这样的循序渐进,
很多时候都是靠着理论与大自然的观察给出灵感。
例如代数从二元的复数一路发展到八元数,都还能符合代数环的规则,
就启发很多物理学家往多维宇宙的研究(弦理论)。
回到复数,傅立叶转换的应用让小说家发现情报(information)
是可以藏在复数平面上的,这就有很大想像空间。
例如英灵殿、例如FGO的迪亚马特、所罗门和其他害兽,
实体就被藏在我们实数平面看不到的复数空间(虚数之海)中。
然后有某个力量提供光源,把这些复数空间的资讯投影到实数平面(我们的世界),
或是直接把他们从藏身处拉到我们的世界内。
我想,奈须蘑菇毕竟还是小说家,
要解释他们建立的世界应该是不需要非欧几何或是流型的理论实证,
只要发挥点想像力牵强附会一下就很好很潮了。
PS复数也是研究量子力学、量子通讯、量子讯息论的重要工具喔。