[关键字]: MxNet, deep learning, large dataset, mx.io.CSVIter
[出处]:
http://chingchuan-chen.github.io/posts/2017/04/16/mxnet-io-csviter
[重点摘要]:
本篇的重点在于下面这段R,用MxNet提供的mx.io.CSVIter去batch的训练Net模型
而这里的`train-64x64-data.csv`,每一行都是经过resized的30`张图片
所以`data.shape`是`64 x 64 x 30`
而label则每一行是长度600的binary vector,其`shape`设定成`600`
然后给好`batch.size`,MxNet就可以批次的从csv抓资料出来train模型了
不用一股脑地把资料全部汇入到R/gpu里面跑,不然再多的内存也用不完Orz
``` R
data_train <- mx.io.CSVIter(
data.csv = "train-64x64-data.csv", data.shape = c(64, 64, 30),
label.csv = "train-systole.csv", label.shape = 600,
batch.size = batch_size
)
```