如题,详细如下:
(1)
import tensorflow as tf
with tf.Session() as sess:
s = tf.random_uniform((2,3), 0, 2, dtype="int32", seed = None)
see_s = s.eval(session=sess)
这段code因为没有指定seed,每次run都会看到不同的see_s,很正常
(2)
import tensorflow as tf
with tf.Session() as sess:
s = tf.random_uniform((2,3), 0, 2, dtype="int32", seed = 1)
see_s = s.eval(session=sess)
这段code因为有指定seed,每次run都会看到相同的see_s,很正常
但是!
(3)
import tensorflow as tf
with tf.Session() as sess:
s = tf.random_uniform((2,3), 0, 2, dtype="int32", seed = 1)
see_s_1 = s.eval(session=sess)
see_s_2 = s.eval(session=sess)
会发现see_s_1 不等于 see_s_2
WHY!?
目前只能马后炮猜测每eval一次 会改变seed一次
但是好没说服力QQ
请问板友们真正原因~谢谢!
ref: https://github.com/tensorflow/tensorflow/issues/9171
(好像没有什么结论@@?)