[试题] 106下 刘丰哲 调和分析一 期末考

楼主: t0444564 (艾利欧)   2018-07-12 09:31:51
课程名称︰调和分析一
课程性质︰数学研究所选修课程
课程教师︰刘丰哲
开课学院:理学院
开课系所︰数学研究所
考试日期︰2018年06月28日(四)
考试时限:10:20-12:10,共计110分钟
试题 :
                 调和分析
1
 1. Let f∈L(-π,π] and suppose that f=0 on (-δ,δ), 0<δ<π. Show that
S_n(f,x) converges uniformly to 0 for x∈[-δ/2,δ/2].
2
2. Suppose that f∈L(-π,π] and let
           ~ ∞      ^ int
S(f) ~ Σ -i sgn(n) f(n) e
n=-∞
be the conjugate series of the Fourier series S(f) of f.
                 ~ 2          ~
Show that there is a function f in L (-π,π] such that S is the Fourier
        ~
series of f.
1
3. Let f∈L(|R) and for δ > 0 let
(δ) 1 ∞ -δξ
f (x) =

Links booklink

Contact Us: admin [ a t ] ucptt.com