课程名称︰常微分方程导论
课程性质︰必修
课程教师︰夏俊雄
开课学院:理学院
开课系所︰数学系
考试日期(年月日)︰2012/09/25
考试时限(分钟):
试题 :
                              ODE QUIZ  9/25/2012
You have to turn in the first problem set in class.
1. Solve the following differential equations.
 x''(t) - x'(t) - 2x(t) = e^t + cost,          x'(0) = 1, x(0) = 0.
 x'''(t) - 3x''(t) + 3x'(t) - x(t) = 2t + e^t, x''(0) = 2, x'(0) = 2, x(0) = 1.
 x''(t) - 4x'(t) + 4x(t) = te^2t + 1,          x'(0) = 0, x(0) = 1.
 x''(t) + tx'(t) + 2x(t) = 0,                  x'(0) = 2, x(0) = 1.
 x''(t) + x(t) = sin(2t) + cost,               x(0) = 1, x'(0) = 0.
2.For a matrix A ∈ M_n(R), the minimal polynomial of A is a nonzero polynomial
p(x) such that
  a) p(A) = 0, and
  b) for any nonzero polynomial f(x) satisfying f(A) = 0, deg(p(x))≦deg(f(x)).
Show the following statements.
 (1) If p(x) is a minimal polynomial of A and the polynomial f(x) satisfying
     f(A) = 0, then p(x)|f(x)  (p(x) is a factor of f(x)).
 (2) Let
                     ╭ 0     1     0     0    …    0   ╮
                     │ 0     0     1     0    …    0   │
                     │ 0     …    …    …   …    0   │
                 A = │ 0     …    …    …   …    0   │
                     │ 0     …    …    …   0     1   │
                     ╰-a_0  -a_1  -a_2  -a_3  …  -a_n-1╯
     Prove that p(x) = x^n + a_n-1˙x^n-1 + … + a_1˙x + a_0 is a minimal
     polynomial of A.