[News] Nanoparticles 'click' immune cells to

楼主: ck6cj962k6 (n/a)   2019-08-29 23:01:17
IBS scientists have reported a novel targeting strategy that allows deep tumor penetration of drug-loaded nanoparticles. They induced the linking of immune cell-targeting antibodies to drug-loaded nanoparticles on the cells, instead of taking them up in the cells or using antibody-nanoparticle conjugates.
Tiny nanobots flowing through the body to repair damagedells. Once supposed to be considered ascience fiction, these microrobots are becoming a reality with a slew of experimental trials. It is generally thought that nanoparticles are so tiny that they can roam freely all over the body after administration. However, this is only partly true. In a tumor, nanoparticles can make inroads into tumors only as deep as 100 μm from the vessels. The diffusion of the nanoparticles can be also hindered by several
barriers, such as dense tumor tissue, high interstitial pressure, and inhomogeneous vascular distribution. Thus,ancer cellsocated deep in the tissue may survive, resulting in recurrence.
Interestingly, it is reported thatmmune cellstend to accumulate at deep tumors. As tumors outgrowlood supply, immune cells are preferentially recruited to a tumor microenvironment to support the blood supply to tumors and tissue remodeling. There have been several attempts to use immune cells to delivernti-cancer drugso the regions inaccessible by conventional targeting approaches. Since most of them require time-consuming manipulations to extract, grow, and inject cells, this ex vivo process lowers
efficacy of the treatment. Others explored ways to have antibody carrying nanoparticles target immune cells. Again, this approach proves ineffective as nanoparticles bulk up with the chemotherapy drug carried and cannot reach the designations efficiently.
In a paper published inournal of the American Chemical Society, the joint research team led by Director Taeghwan Hyeon at the Center for Nanoparticles within the Institute for Basic Science (IBS) in Daejeon, Dr. Seung-Hae Kwon at Korea Basic Science Institute in Seoul, and Prof. Nohyun Lee at Kookmin University in Seoul, South Korea reported a novel targeting strategy that allows deep tumor penetration of drug-loaded nanoparticles. They used a "click reaction," a chemical reaction that easily joins
molecular building blocks just as two pieces of a seat belt "click" to buckle. "Our idea was to induce the linking of immune cell-targeting antibodies to drug-loaded nanoparticles on the cells, instead of taking them up in the cells or using antibody-nanoparticle conjugates. Most other studies did so and failed to produce satisfactory results," notes Professor Nohyun Lee, the corresponding author of the study.
In a click reaction, chemical reagents enable an easy link of unnatural chemical groups to any site of a target protein with high site-selectivity. In the study, researchers used the click reaction between trans-cyclooctene and tetrazine. Trans-cyclooctene-functionalized antibodies are injected into mice to label tumor-infiltrating immune cells. After a certain time, tetrazine-functionalized mesoporous silica nanoparticles are administered so that they "click" to link up to immune cells. "This click
reaction-assisted immune cell targeting (CRAIT) strategy successfully "invaded" the intended areas: Real-time fluorescence imaging of the tumor tissue shows that motile immune cells transport the nanoparticles as seen in Figure 2. Compared to passive targeting, the CRAIT method brought a twofold reduction in theumorurden in aggressive breast cancer models," explains Dr. Soo Hong Lee, the first author of the study. The nanoparticles loaded with an anticancer drug, doxorubicin, did not affect the
viability and migration of the cells.
Director Taeghwan Hyeon, the corresponding author of the study says, "The intratumoral distribution of nanoparticles delivered by the CRAIT method was the key to overcoming limitations of conventional delivery methods. This study will broaden the application of nanomedicines."
Since the CRAIT method relies on the click reaction, it can be applied to various delivery vehicles including micelles, liposomes, and other nanoparticles. Additionally, if adequate antibodies are available, various circulating cells can be used as delivery vehicles. Because the circulating cells are involved in various inflammatory diseases, the coverage of the CRAIT method is not limited to cancer. The versatile CRAIT method is simple, which requires modification of antibodies andanoparticlessing
well-developed bio-conjugation reaction.

Links booklink

Contact Us: admin [ a t ] ucptt.com