※ 引述《lovecity (我要快乐)》之铭言:
: 目前用LM4F的MCU写 五个不同仪器的资料可以由五个UART(UART1、UART2、UART3、UART4
: 、UART5)的Rx接收
: 后送给UART0的Rx收然后传给电脑人机(BCB5)
: UART0的部分是使用udma写的
: 以下是我撷取的一部分芯片程式码
: // The number of SysTick ticks per second used for the SysTick interrupt.
: //*****************************************************************************
: #define SYSTICKS_PER_SECOND 100
: //*****************************************************************************
: // The size of the UART transmit and receive buffers. They do not need to be
: // the same size.
: //*****************************************************************************
: #define UART_TXBUF_SIZE 16
: #define UART_RXBUF_SIZE 16
: //*****************************************************************************
: // The transmit and receive buffers used for the UART transfers. There is one
: // transmit buffer and a pair of recieve ping-pong buffers.
: //*****************************************************************************
: //static unsigned char g_ucTxBuf[UART_TXBUF_SIZE];
: static unsigned char g_ucRxBuf1[UART_RXBUF_SIZE];
: static unsigned char g_ucRxBuf2[UART_RXBUF_SIZE];
: static unsigned char g_ucRxBuf3[UART_RXBUF_SIZE];
: static unsigned char g_ucRxBuf4[UART_RXBUF_SIZE];
: static unsigned char g_ucRxBuf5[UART_RXBUF_SIZE];
: static unsigned char g_ucRxBuf6[UART_RXBUF_SIZE];
: static unsigned char g_ucRxBuf7[UART_RXBUF_SIZE];
: //static unsigned char k=0;
: unsigned char uartTmpBuff[UART_RXBUF_SIZE+4+4];
: void
: UART1IntHandler(void) //此中断是做收资料与传资料
: {
: unsigned long ulStatus;
: char header[]="###B"; //辨识符号
: char tail[]="B%%%";
: //get interrupt status
: ulStatus = ROM_UARTIntStatus(UART1_BASE, true);
: //clear the asserted interrupts
: ROM_UARTIntClear(UART1_BASE, ulStatus);
: //FIFO data transfer
: if(ulStatus == UART_INT_RX)//接收中断标帜
: {
: while(ROM_UARTCharsAvail(UART1_BASE)) //loop while there are chars
: {
: g_ucRxBuf1[g_ulRxBuf1Count++] = ROM_UARTCharGetNonBlocking(UART1_BASE);
: if(g_ulRxBuf1Count >= UART_RXBUF_SIZE)
: {
: g_ulRxBuf1Count = 0;
: /*ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART0TX | UDMA_PRI_SELECT,
: UDMA_MODE_BASIC, header,
: (void *)(UART0_BASE + UART_O_DR),
: 3);
: ROM_uDMAChannelEnable(UDMA_CHANNEL_UART0TX);*/
: memcpy(uartTmpBuff,header,sizeof(header));
: memcpy(uartTmpBuff+sizeof(header)-1,g_ucRxBuf1,sizeof(g_ucRxBuf1));
: memcpy(uartTmpBuff+sizeof(header)+sizeof(g_ucRxBuf1)-1,tail,sizeof(tail));
: //通道传输设置
: ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART0TX | UDMA_PRI_SELECT,
: UDMA_MODE_BASIC, uartTmpBuff,
: (void *)(UART0_BASE + UART_O_DR),
: sizeof(uartTmpBuff));
: ROM_uDMAChannelEnable(UDMA_CHANNEL_UART0TX);
: }
: }
: }
: }
: void
: UART2IntHandler(void) //此中断是做收资料与传资料
: {
: unsigned long ulStatus;
: char header[]="###C";
: char tail[]="C%%%";
: //get interrupt status
: ulStatus = ROM_UARTIntStatus(UART2_BASE, true);
: //clear the asserted interrupts
: ROM_UARTIntClear(UART2_BASE, ulStatus);
: //FIFO data transfer
: if(ulStatus == UART_INT_RX)
: {
: while(ROM_UARTCharsAvail(UART2_BASE)) //loop while there are chars
: {
: g_ucRxBuf2[g_ulRxBuf2Count++]= ROM_UARTCharGetNonBlocking(UART2_BASE);
: if(g_ulRxBuf2Count >= UART_RXBUF_SIZE)
: {
: g_ulRxBuf2Count = 0;
: memcpy(uartTmpBuff,header,sizeof(header));
: memcpy(uartTmpBuff+sizeof(header)-1,g_ucRxBuf2,sizeof(g_ucRxBuf2));
: memcpy(uartTmpBuff+sizeof(header)+sizeof(g_ucRxBuf2)-1,tail,sizeof(tail));
: ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART0TX | UDMA_PRI_SELECT,
: UDMA_MODE_BASIC, uartTmpBuff,
: (void *)(UART0_BASE + UART_O_DR),
: sizeof(uartTmpBuff));
: ROM_uDMAChannelEnable(UDMA_CHANNEL_UART0TX);
: }
: }
: }
: }
: void
: InitUART0(void)
: {
: // Enable the UART peripheral, and configure it to operate even if the CPU
: // is in sleep.
: ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
: ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
: ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART0);
: ROM_GPIOPinConfigure(GPIO_PA0_U0RX);
: ROM_GPIOPinConfigure(GPIO_PA1_U0TX);
: ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
: // Configure the UART communication parameters.
: ROM_UARTConfigSetExpClk(UART0_BASE, ROM_SysCtlClockGet(), 115200,
: UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
: UART_CONFIG_PAR_NONE);
: // Set both the TX and RX trigger thresholds to 4. This will be used by
: // the uDMA controller to signal when more data should be transferred.
: The
: // uDMA TX and RX channels will be configured so that it can transfer 4
: // bytes in a burst when the UART is ready to transfer more data.
: ROM_UARTFIFOLevelSet(UART0_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8);
: // Enable the UART for operation, and enable the uDMA interface for RX
: // channels.
: ROM_UARTEnable(UART0_BASE);
: ROM_UARTDMAEnable(UART0_BASE, UART_DMA_TX);
: // Put the attributes in a known state for the uDMA UART0TX channel.
: These
: // should already be disabled by default.
: // uDMA通道属性清除
: ROM_uDMAChannelAttributeDisable(UDMA_CHANNEL_UART0TX, //选择UART0 TX的
: DMA通道
: UDMA_ATTR_ALTSELECT | //设置为主控制结
: 构
: UDMA_ATTR_HIGH_PRIORITY | //普通优先级
: UDMA_ATTR_REQMASK); //响应外设请求
: // Set the USEBURST attribute for the uDMA UART TX channel. This will
: // force the controller to always use a burst when transferring data from
: // the TX buffer to the UART. This is somewhat more effecient bus usage
: // than the default which allows single or burst transfers.
: //uDMA通道属性始能
: ROM_uDMAChannelAttributeEnable(UDMA_CHANNEL_UART0TX, UDMA_ATTR_USEBURST);
: //选择UART0 TX的DMA通道;设置触发方式只有脉冲触发有效
: // Configure the control parameters for the UART TX. The uDMA UART TX
: // channel is used to transfer a block of data from a buffer to the UART.
: // The data size is 8 bits. The source address increment is 8-bit bytes
: // since the data is coming from a buffer. The destination increment is
: // none since the data is to be written to the UART data register. The
: // arbitration size is set to 4, which matches the UART TX FIFO trigger
: // threshold.
: //uDMA通道控制设置
: ROM_uDMAChannelControlSet(UDMA_CHANNEL_UART0TX | UDMA_PRI_SELECT,
: UDMA_SIZE_8 | UDMA_SRC_INC_8 |
: UDMA_DST_INC_NONE |
: UDMA_ARB_4);
: }
: void
: InitUARTs(void)
: {
: // Enable the UART1 peripheral, and configure it to operate even if the
: CPU is in sleep.
: ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);
: ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1);
: ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART1);
: ROM_GPIOPinConfigure(GPIO_PC4_U1RX);
: ROM_GPIOPinConfigure(GPIO_PC5_U1TX);
: ROM_GPIOPinTypeUART(GPIO_PORTC_BASE, GPIO_PIN_4 | GPIO_PIN_5);
: ROM_UARTConfigSetExpClk(UART1_BASE, ROM_SysCtlClockGet(), 9600,
: UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE);
: ROM_UARTFIFOLevelSet(UART1_BASE, UART_FIFO_TX2_8, UART_FIFO_RX2_8);
: ROM_UARTEnable(UART1_BASE);
: ROM_IntEnable(INT_UART1);
: ROM_UARTIntEnable(UART1_BASE, UART_INT_RX | UART_INT_RT);
: }
: int
: main(void)
: {
: static unsigned long ulPrevSeconds;
: volatile unsigned long ulLoop;
: // Enable lazy stacking for interrupt handlers.
: ROM_FPULazyStackingEnable();
: //clock 80M
: SysCtlClockSet(SYSCTL_SYSDIV_2_5 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
: SYSCTL_XTAL_16MHZ);
: ROM_SysCtlPeripheralClockGating(true);
: // Enable the GPIO port that is used for the on-board LED.
: ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
: ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1);
: ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2);
: // Configure SysTick to occur 100 times per second, to use as a time
: // reference. Enable SysTick to generate interrupts.
: ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
: ROM_SysTickIntEnable();
: ROM_SysTickEnable();
: // Initialize the CPU usage measurement routine.
: //CPUUsageInit(ROM_SysCtlClockGet(), SYSTICKS_PER_SECOND, 2);
: // Enable the uDMA controller at the system level. Enable it to continue
: // to run while the processor is in sleep.
: ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
: ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);
: // Enable the uDMA controller error interrupt. This interrupt will occur
: // if there is a bus error during a transfer.
: ROM_IntEnable(INT_UDMAERR);
: // Enable the uDMA controller.
: ROM_uDMAEnable();
: // Point at the control table to use for channel control structures.
: ROM_uDMAControlBaseSet(ucControlTable);
: // Initialize the uDMA memory to memory transfers.
: //InitSWTransfer();
: // Initialize the uDMA UART transfers.
: ROM_IntMasterEnable();
: InitUART0();
: InitUARTs();
: UARTStdioInit(0);
: UARTprintf("\nStart\n");
: // Remember the current SysTick seconds count.
: ulPrevSeconds = g_ulSeconds;
: GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0);
: // Loop until the button is pressed. The processor is put to sleep
: // in this loop so that CPU utilization can be measured.
: while(1)
: {
: // Check to see if one second has elapsed. If so, the make some
: updates.
: if(g_ulSeconds != ulPrevSeconds)
: {
: // Turn on the LED as a heartbeat
: GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2);
: SysCtlDelay(SysCtlClockGet() / 3 /5);
: // Turn off the LED.
: GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);
: SysCtlDelay(SysCtlClockGet() / 3 /5);
: }
: // Put the processor to sleep if there is nothing to do. This allows
: // the CPU usage routine to measure the number of free CPU cycles.
: // If the processor is sleeping a lot, it can be hard to connect to
: // the target with the debugger.
: ROM_SysCtlSleep();
: // See if we have run long enough and exit the loop if so.
: if(g_ulSeconds >= 10)
: {
: break;
: }
: }
: // Indicate on the display that the example is stopped.
: UARTprintf("\nStopped\n");
: // Loop forever with the CPU not sleeping, so the debugger can connect.
: while(1)
: {
: GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, GPIO_PIN_1);
: GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2);
: SysCtlDelay(SysCtlClockGet() / 3 /5);
: GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0);
: GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);
: SysCtlDelay(SysCtlClockGet() / 3 /5);
: }
: }
: 跟电脑人机连接的UART0鲍率是设定115200
: 其他五个UART的鲍率是19200
: 五个仪器会同时传资料进芯片
: 芯片再传给人机
: 我用BCB5写人机接口
: 但是如果送进去芯片的资料量大一点
: 人机接口收到所解出来的资料就会错很多
: 除错除了快一个月了
: 无法确定是芯片的问题还是BCB5的问题
: 请问有高手可以指教吗???
: 芯片这样写如果五组资料同时传会不会造成资料错乱呢?
: BCB5收资料的部分我是用到六个timer去写
: 一个timer专门收集资料
: 另外五个解五个仪器的资料
: 大致上是这样
: 感激不尽 ><
当五个仪器得资料进来时,所对应的MCU的UART有设定优先权吗?
假设MCU UART0 接收资料时在中断停留太久,其他的UART中断来不及处理
就会有可能会掉资料.
你可以试看看量测UART进入中断到出中断时间,推算是否会超过接收资料得时间.
当传输资料量变大时,有可能在某一中断接收与传送资料太久导致其他中断
无法接收完全的资料
以上就参考看看